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Discrete Space-Time
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A variant of the causal set hypothesis is discussed. Discrete space-time is an
oriented graph, and the vertexes of the graph are world points. The oriented edges
are elementary causal connections. The graph is the deepest level of matter. The
vertexes and the edges are elementary objects and have no internal structure. All
information consists in the structure of the graph, which is described by sums
of paths. Grassmann variables and integrals of Grassmann variables are used for
summing paths. The sums of paths define complex amplitudes, which correspond
to each pair of vertexes. The complex amplitudes of all pairs of vertexes comprise
a Hermitian amplitude matrix.

1. INTRODUCTION

A variant of the causal set hypothesis is discussed in this paper. According
this hypothesis, space-time is a discrete, locally finite, partially ordered set
(Bombelli et al., 1987; Sorkin, 1991). The aim of this paper is to find a
mathematical description of the causal set that is connected with quantum
theory in the sense of the correspondence principle. Graph theory is used.
Some preliminary results are given in Krugly (1998).

2. MODEL

Suppose space-time is an oriented graph (the edges of the graph have
an orientation). Graph theory is presented in Ore (1962). The set of events
is discrete. Some pairs of events are connected by discrete causal connections.
A fragment of such a graph is represented in Fig. 1. The vertexes are world
points. The represented fragment contains nine vertexes. In this paper the
vertexes always have numbers. The oriented edges are elementary causal
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Fig. 1. An example of a graph.

connections. An edge is directed from a vertex-cause to a vertex-effect. In
Fig. 1 some edges are linked with only one vertex because the paired vertex
lies outside the figure. We do not discuss the problem of the finiteness or
infinity of the graph of the universe. In any case we can consider only finite
fragments and take into account the rest of the graph in an approximate way.

A set of edges is called a sequence if every two neighboring edges have
a common vertex. A sequence is called oriented if all edges of the sequence
are included in the direction of the orientation. Two vertexes a and b have
a causal connection if there is an oriented sequence between them. The
numbers of the vertexes are denoted by lowercase Latin letters. Vertex a is
the cause of vertex b if vertex a is the initial vertex of this sequence. By Sab

we denote the sequence between vertexes a and b. An initial vertex is placed
first in designations. Sab is called cyclic if the vertexes a and b coincide. The
causality principle is the prohibition of oriented cyclic sequences.

Suppose the causality principle is fulfilled. The all-vertex set divides
into three subsets for each vertex a. The first set is the causes of the vertex
a. The second set is the consequences of the vertex a. The third set does not
connect with the vertex a by causal connections. In Fig. 1, vertexes 1, 2, and
4 are the causes of vertex 7, the vertexes 8 and 9 are effects of vertex 7, and
the vertexes 3, 5, and 6 do not connect by causal connections with the vertex
7 in the considered fragment of the graph.

Suppose the graph is the deepest level of matter. Vertexes and edges
are elementary objects and have no internal structure. All the vertexes are
identical and so are all edges. All information consists in the structure of the
graph. The graph makes up space-time. Particles are fragments of the graph
with some symmetry.
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The causality principle is the unique restriction on the structure of the
graph in this paper. The graph satisfies the following conditions (however,
the results in this paper do not depend on these conditions):

1. Suppose the number of incident edges directed to a vertex is equal
to the number of incident edges directed from this vertex. This postulate is
called the fundamental law of conservation.

2. The minimum number of interacting objects is equal to two. Suppose
each vertex has two incident edges directed to this vertex. This postulate is
called the binary principle. Then each vertex has two incident edges directed
from this vertex. The graph in Fig. 1 is such a graph.

In this paper vertexes are discrete analogues of points of continuous
space-time. It should be possible to formulate this model in terms of binary
alternatives. The graph in Fig. 1 is an analogue of the chessboard in Fig. 2
in Finkelstein (1969). The main ideas of this approach are discussed in von
Weizäcker (1975, 1977).

3. SUMS OF SEQUENCES

Consider the description of a graph’s structure by analogy to quantum
theory. The available framework is some sum-over-histories (Sorkin, 1991).
This sum-over-histories is used to construct amplitudes. The path integral is
the mathematical basis of quantum theory. In the case of a graph the analogy
of a path is a sequence and the analogy of a path integral is a sum of sequences.

By G denote a fragment of a graph. Consider an incidence matrix M(G).
A matrix element mab is equal to 1 if there is an oriented edge between an
initial vertex a and a final vertex b. If there is more than one oriented edge
between vertexes a and b, the element mab is equal to the number of these
edges. Otherwise mab 5 0. M(G) completely describes the structure of G.

By Sab(n) denote the sequence between vertexes a and b if Sab(n) consists
of n edges. Consider the matrix (M(G))2. The element mab(2) of the matrix
(M(G))2 is equal to the number of all oriented sequences Sab(2). The element
mab(n) of the matrix (M(G))n is equal to the number of all oriented
sequences Sab(n).

Similarly, a transposed incidence matrix M T(G) describes the fragment
G8, which has the same structure as G, but the direction of the edges of G8
is opposite to the direction of the edges of G. The element mab(n) of the
matrix (MT(G))n is equal to the number of all sequences Sab(n) with orienta-
tion reversed.

In the general case Sab includes some edges in the direction of the
orientation and some edges in the reverse direction. Consider an element
mab(n) of a product of n matrixes M(G) and M T(G). mab(n) is equal to the
number of all sequences Sab(n) if Sab(n) includes an edge in the direction of
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the orientation or in the reverse direction according to the succession of M(G)
and M T(G) in the product.

The same edge can be included many times in a sequence. Consequently,
the number of sequences between two vertexes in G is infinite. We can sum
sequences with coefficients. The sum of all sequences Sab between vertexes
a and b is finite if the coefficients decrease quickly enough when the number
of edges in sequences increases. We can also consider paths. A sequence is
a path if each edge of the sequence is included only once. A finite fragment
of a graph has only a finite number of paths. They can be summed up with
coefficients that have the same magnitude by analogy to quantum theory.

Replace the elements mab 5 1 in the incidence matrix by quantities
jab. Let

jabjab 5 jabjba 5 jbajab 5 jbajba 5 0 (1)

A product of quantities jab with different indexes is not equal to 0. Thus
jab is a generator of a one-dimensional Grassmann algebra. The theory of
Grassmann algebras is presented in Fearnley-Sander (1979).

If there are k edges between vertexes a and b, then a path can include
all of them. In this case replace mab in the following way:

mab → o
k

l51
jab(l) (2)

where

jab(l)jab( f ) 5 0 if l 5 f
(3)

jab(l)jab( f ) Þ 0 if l Þ f

Thus each edge of G corresponds to a generator of a one-dimensional
Grassmann algebra. By J(G) denote the obtained incidence matrix. Hence-
forth we drop the number of an edge and denote jab(l) by jab. If a path between
vertexes a and b consists of n edges, then it corresponds to a product Pab(n)
of n generators of Grassmann algebras,

Pab(n) 5 jacjcdjdj . . . jmb (4)

when the indexes are equal to the numbers of vertexes along this path.
The element jab(n) of the product of n matrixes J(G) and JT(G) is

equal to the sum of all paths Pab(n) if these paths include the edges in the
direction of the orientation or in the inverse direction according to the succes-
sion of J(G) and JT(G) in the product.

Let us discuss the following possibility:
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{jabjcd}+ 5 jabjcd 1 jcdjab 5 0 (5)

In this case the elements jab are generators of one Grassmann algebra.
The dimension of this algebra is equal to the number of edges of G. Pab(n)
is an element of this Grassmann algebra. Condition (1) is a consequence of
condition (5).

In the general case a permutation of the edges in a path does not generate
a path. Consider a special case. Let a path include one circuit, i.e., a cyclic path
without self-crossing. The permutation of all edges of the circuit generates a
new path. In this path the edges of the circuit are included in the reverse
order and direction (Fig. 2). Another part of the initial path is not changed.
These paths have a different sign according to (5) and they are excluded
from jab(n) if the number k of edges of the circuit is even and k/2 is odd, or
if k is odd and (k 2 1)/2 is odd. Then condition (5) excludes some paths
from jab(n).

Let us consider a stronger restriction. Consider arcs. The arc is a paths
without self-crossings.

Let each vertex a correspond to the quantities ja and za and the edge
between vertexes a and b correspond to the product jazb. Let an arc between
vertexes a and b consist of n edges. This arc corresponds to a product Aab(n)
of 2n quantities if conditions (6)–(8) hold:

Aab(n) 5 jazcjczd . . . jizb (6)

where the indexes are equal to the numbers of the vertexes along this arc.
A vertex in an arc cannot be the beginning of edges twice. Thus, ja is

a generator of a one-dimensional Grassmann algebra:

Fig. 2. An example of a path that includes one circuit. The arrow shows the direction of the
circuit in the path.
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jaja 5 0 (7)

A vertex in an arc cannot be the end of edges twice. Thus za is also a
generator of a one-dimensional Grassman algebra:

zaza 5 0 (8)

The case of Aab(2) is an exception and will be considered below.
Substitute the products nabjazb for the elements mab of M(G). nab is equal

to the number of edges between vertexes a and b. By Z(G) denote the obtained
matrix. Substitute the products nabzbja for the elements nabjazb of the matrix
Z(G) and transpose this matrix. By Z 8(G) denote the obtained matrix. Z 8(G)
describes the fragment G8. An element zab(n) of a product of n matrices Z(G)
and Z 8(G) is equal to the sum of all arcs Aab(n) if these arcs include the
edges in the direction of the orientation or in the inverse direction according
to the succession of Z(G) and Z 8(G) in the product, except the case of Aab(2).

The correspondence of the quantities ja and za to the vertexes does not
allow us to distinguish single and multiple edges. Consequently in the case
of zab(2) the obtained sum includes a cyclic sequence that consists of one
edge. This edge is included in this sequence twice: first in one direction and
then in the inverse direction (Fig. 3). Consider the diagonal matrix N(G) with
the elements

naa 5 o
b

nabjazbjbza (9)

Consider the matrix Z(G, 2)

Z(G, 2) 5 Z(G)Z 8(G) 1 Z 8(G)Z(G) 2 N(G) (10)

The elements of this matrix are equal to the sums of all arcs that consist of
two edges.

Fig. 3. A cyclic sequence that consists of one edge.
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As in the case of paths, let

{jajb}+ 5 jajb 1 jbja 5 0 (11)

Then the quantities ja are generators of one Grassmann algebra. The
dimension of this algebra is equal to the number of the vertexes of G.

Similarly, let

{zazb} 5 zazb 1 zbza 5 0 (12)

Then the quantities za are generators of a second Grassmann algebra.
The dimension of this algebra is also equal to the number of vertexes of G.

In this case some arcs are excluded from sums as in the case of paths.
In all considered cases the sums of all paths or arcs between two vertexes

are finite. The first case of paths is most interesting because the restriction is
minimal. However, the results in the next section hold for all considered cases.

4. THE AMPLITUDE MATRIX

In the previous section we summed edges without coefficients. If a sum
over paths corresponds to a path integral in a continuous limit, then an edge
corresponds to a segment of a continuous path. In accordance with quantum
theory we should multiply the element jab of J(G) by the coefficient exp(ia).
a is called a phase of an edge. The transposition of J(G) corresponds to
time inversion and in this case the phase of an edge changes sign. An edge
is an elementary object and has no internal structure. Consequently a is a
constant. We take

exp(ia) 5 i, a 5 p/2 (13)

Let us discuss the reason for this value. Put two vertexes connected by an
edge in Minkowski space-time. Put the origin of a Cartesian system at the
vertex-cause. If we use a Cartesian system we can use complex coordinates
(Einstein, 1910) instead of covariant and contrvariant coordinates. The coordi-
nates of a point are (x, y, z, it). If we invert the timelike axis, the coordinates
of this point are (x, y, z, 2it). Let us choose the Cartesian system such that
the coordinates of the vertex-effect are (0, 0, 0, it). The timelike axis coincides
with the edge. The edge is the unit of proper time—chronous. The natural
coordinates of the vertex-effect are (0, 0, 0, i). I suppose the proper time
interval of the edge is the amplitude of the edge. The space-time measure
and the amplitude function are connected with different algebras at the sets
of edges.

However, I do not use a particular value of the constant a in this paper.
Consider the sums over paths with phases. We have for paths including

one edge
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V(G, 1) 5 exp(ia) J(G)
(14)

V+(G, 1) 5 exp(2ia) JT(G)

Consider the matrices of sums of paths including n edges with phases,

V(G, n, j, f ) 5 o
P

V(G, 1) j(V+(G, 1)) f

(15)

j 1 f 5 n

where we take summation over all permutations P of matrixes V(G, 1) and
V+(G, 1).

We obtain the expression (16) for the sums of all paths including n
edges with phases,

V(G, n) 5 o
n

j50
V(G, n, j, f ) (16)

We obtain the following expression for the sums of all paths with phases:

V(G) 5 o
`

n51
V(G, n) (17)

An element vab of this matrix is equal to the sum of all paths between
vertexes a and b. In expression (17) each edge of paths is a Grassmann
generator multiplied by a coefficient. If the edge between vertexes c and d
is included in a path in the direction of the orientation, then this edge is
exp(ia) jcd. If this edge is included in a path in the inverse direction, then
this edge is exp(2ia) jcd.

Introduce a linear operator ĵ, which operates on jab and transforms these
Grassmann generators to the number 1. ĵ is an integral of Grassmann variables,

ĵ(ajab . . . jcd 1 bjef . . . jkl)

5 # . . . # (ajab . . . jcd) djcd . . . jab

1 # . . . #(bjef . . . jkl) djkl . . . djef 5 a 1 b (18)

where a and b are complex numbers. Operate on V(G) by ĵ

F(G) 5 ĵV(G) (19)

The element fab of the matrix F(G) is equal to the number of all paths
with phases between vertexes a and b. F(G) is called the amplitude matrix
and fab is called the amplitude between vertexes a and b. It is possible the
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quantity fabfab* is some probability. This will be discussed in a further paper.
Some preliminary results are given in Krugly (1998).

Thus, a complex amplitude corresponds to each pair of points of discrete
space-time. It is equal to the number of all paths with phases between these
points. An integral of Grassmann variables is used for summing paths. A set
of amplitudes of all vertex pairs of G is an amplitude matrix of G.

An elementary particle is specified by certain quantum numbers. In the
proposed discrete model a particle is some fragment of the graph and the
quantum numbers should be taken from the structure of the graph. F(G)
describes the structure of the graph. Suppose this description allows us to
associate different fragments of the graph with elementary particles. Consider
the properties of F(G).

An element of a principal diagonal of F(G) is a real number. A diagonal
element faa is a sum of paths that go out and come in at the same vertex a.
They are cyclic paths. Each path is included into this sum twice, once in one
direction and the second time in the inverse direction. Hence each imaginary
summand has a pair with an inverse sign and they are excluded.

An off-diagonal element is complex conjugate to a symmetrical element.
An off-diagonal element fab is a sum of paths between vertexes a and b. A
symmetrical element fba is a sum of paths between vertexes b and a. These
paths are the same, but with inverse direction. Hence the real parts of fab

and fba coincide and the imaginary parts have an equal magnitude and a
different sign.

Consequently an amplitude matrix is a Hermitian matrix,

Im(faa) 5 0, fab 5 f*ba (20)

An amplitude matrix of order n corresponds to n vertexes of the graph.
A fragment of the graph with some symmetry corresponds to an amplitude
matrix with some special properties. If these special Hermitian matrixes of
different orders correspond to particles, then the particles are described by
this discrete model. This will be discussed in a further paper.
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Fearnley-Sander, D. (1979). American Mathematical Monthly, 86, 809.
Finkelstein, D. (1969). Physical Review, 184, 1261–1273.
Krugly, A. L. (1998). The Model of Discrete Space-Time, Monolog, Moscow [in Russian].
Ore, O. (1962). Theory of Graphs, AMS, Providence, Rhode Island.



984 Krugly

Sorkin, R. D. (1991). Spacetime and causal set, in Relativity and Gravitation: Classical and
Quantum. Proceedings of the SILARG VII Conference, Cocoyoc, Mexico, December, 1990,
J. C. D’Olivo et al., eds., pp. 150–173.
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